Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas
نویسندگان
چکیده
Heat stress can induce the cultured microspores into embryogenesis. In this study, whole genome bisulphite sequencing was employed to study global DNA methylation variations after short-term heat shock (STHS) treatments in cultured microspores of Brassica napus cv. Topas. Our results indicated that treatment on cultured Topas microspores at 32 °C for 6 h triggered DNA hypomethylation, particularly in the CG and CHG contexts. And the total number of T32 (Topas 32 °C for 6 h) vs. T0 (Topas 0 h) differentially methylated region-related genes (DRGs) was approximately two-fold higher than that of T18 (Topas 18 °C for 6 h) vs. T0 DRGs, which suggested that 32 °C might be a more intense external stimulus than 18 °C resulting in more changes in the DNA methylation status of cultured microspores. Additionally, 32 °C treatment for 6 h led to increased CHG differential methylations of transposons (DMTs), which were mainly constituted by overlaps between the hypomethylated differentially methylated regions (hypo-DMRs) and transposon elements (TEs). Further analysis demonstrated that the DRGs and their paralogs exhibited differential methylated/demethylated patterns. To summarize, the present study is the first methylome analysis of cultured microspores in response to STHS and may provide valuable information on the roles of DNA methylation in heat response.
منابع مشابه
Heat-shock proteins 70 kDa and 19 kDa are not required for induction of embryogenesis of Brassica napus L. cv. topas microspores.
It is currently accepted that 'stress' triggers induction of microspore embryogenesis, and for Brassica napus L. cv. Topas it is heat-shock. It has been postulated that the heat-shock proteins (HSPs) generated during heat stress have a central role in the induction mechanism. To test this hypothesis we developed a microspore induction procedure, using colchicine instead of heat treatment. The l...
متن کاملInteractive Effects of Heat Shock and Culture Density on Embryo Induction in Isolated Microspores Culture of Brassica napusL. cv. Global
متن کامل
Effects of Heat Shock and 2, 4-D Treatment on Morphological and Physiological Characteristics of Microspores and Microspore-Derived Doubled Haploid Plants in Brassica napus L.
Background: Stresses such as heat shock, starvation, or osmotic is essential to lead isolated microspores towards embryogenesis. Despite the effectiveness of stresses in embryogenesis, they exert adverse effects on metabolism and growth of the regenerated plants. Objectives: The effects of heat shock and 2,4-D treatment on total protein content of treated microspores, morphological and physiol...
متن کاملDNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis
Stress-induced plant cell reprogramming involves changes in global genome organization, being the epigenetic modifications key factors in the regulation of genome flexibility. DNA methylation, accomplished by DNA methyltransferases, constitutes a prominent epigenetic modification of the chromatin fibre which is locked in a transcriptionally inactive conformation. Changes in DNA methylation acco...
متن کاملComparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings
DNA methylation is responsive to various biotic and abiotic stresses. Heat stress is a serious threat to crop growth and development worldwide. Heat stress results in an array of morphological, physiological and biochemical changes in plants. The relationship between DNA methylation and heat stress in crops is relatively unknown. We investigated the differences in methylation levels and changes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016